CHRISTIAN SERVICE UNIVERSITY COLLEGE KUMASI ## FACULTY OF HEALTH & APPLIED SCIENCE DEPARTMENT OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY BACHELOR OF SCIENCE IN COMPUTER SCIENCE End of First Semester Examination - 2018/2019 Academic Year LEVEL 400 **BSIT 406: SOFTWARE QUALITY ASSURANCE** May, 2018 70 Marks Time Allowed: 2Hours ## GENERAL INSTRUCTIONS TO CANDIDATES - i. Answer all the questions in section A - ii. Answer section **A** on the question paper by **circling** the correct answer. Unless otherwise stated, make only one choice throughout as two choices would be marked wrong. - iii. Write your index number on top of each page of the question paper Examiner: Emmanuel Abaidoo | ndex Number | Signature | Date | |---|--|--| | | SECTION A | | | | | B. Section A is made up of fifty (50) in this section. One (1) mark for each | | 1. The IEEE 829 test plan doc | umentation standard contains a | all of the following except | | a) Test itemsb) Test deliverablesc) Test specificationsd) Test tasks | | | | 2. Which of the following is tr | ue? | | | b) The more tests you run,c) The fewer bugs you find | Id be black box, system testing
the more bugs you will find.
, the better your testing was
in testing, you should not be ve | should be white box. ery confident about the quality of | | 3. The primary objective of for
they do not become defects aft
a) errors
b) equivalent faults
c) failure cause
d) none of the mentioned | | d during the process so that | | 4. A deviation from the specifi | ied or expected behavior that is | s visible to end-users is called: | | a) An errorb) A failurec) A faultd) A defect | | | | 5. Code Coverage is used as a | measure of what? | | | a) Defectsb) Trends analysisc) Test Effectivenessd) Time Spent Testing | | | | 5. Evaluating testability of the | requirements and system are a | part of which phase | | a) Test Analysis and Designb) Test Planning and controlc) Test Implementation andd) Evaluating exit criteria a | ol
execution | | | Index Number | Signature | Date | | |---|--|---|----| | 7. Which of the following techniques is I | NOT a black box te | chnique? | | | a) State transition testingb) LCSAJ (Linear Code Sequence andc) Syntax testingd) Boundary value analysis | d Jump) | | | | 8. When reporting faults found to develo | pers, testers should | be: | | | a) As polite, constructive and helpfulb) Diplomatic and sensitive to the wayc) Firm about insisting that a bug is notd) All of the above | y they may react to | | | | 9. The later in the development life cycle | e a fault is discovere | d, the more expensive it is to fix. Why | у? | | a) The documentation is poor, so it talb) The fault has been built into morec) Wages are risingd) None of the above | | S | | | 10. What is the main reason for testing so | oftware before relea | sing it? | | | a) To decide when the software is of sb) To show that system will work aftec) To find as many bugs as possible bd) To give information for a risk base | er release
efore release | | | | 11. Which of the following is NOT inclu Standard? | ded in the Test Plar | document of the Test Documentation | L | | a) What is not to be testedb) Schedules and deadlinesc) Quality plansd) Test environment properties | | | | | 12. Which statement about expected outc | comes is FALSE? | | | | a) Expected outcomes are defined byb) Expected outcomes may include tirc) Expected outcomes should be predicted outcomes are derived from | ning constraints suc
acted before a test is | h as response times
run | | | Index Number | Signature | Date | |---|-----------------------------------|-------------------------------------| | 13. Which one of the following | describes the major benefit of ve | rification early in the life cycle? | | b) It reduces defect multiplicac) It facilitates timely set up of | | | | 14. Which of the following is No | OT included in failure costs? | | | a) reworkb) repairc) failure mode analysisd) none of the mentioned | | | | 15. Which requirements are the | foundation from which quality is | s measured? | | a) Hardwareb) Softwarec) Programmersd) None of the mentioned | | | | 16. Which of the following is N | OT a SQA plan for a project? | | | a) evaluations to be performeb) amount of technical workc) audits and reviews to be ped) documents to be produced | erformed | | | 17. The degree to which design | specifications are followed in ma | anufacturing the product is called | | a) Quality Controlb) Quality of conformancec) Quality Assuranced) None of the mentioned | | | | 18. Which of the following is No | OT included in External failure | costs? | | a) testingb) help line supportc) warranty workd) complaint resolution | | | | 19. Which of the following is nota) inter-process inspectionb) maintenancec) quality planningd) testing | ot an appraisal cost in SQA? | | | 20. Who identifies, documents, and verifies that corrections have been made to the softwall all project manager b) Project team c) SQA group d) All of the mentioned | vare? | |---|-----------| | 21. Which one of the following describes the major benefit of verification early in the li | fe cycle? | | a) It allows the identification of changes in user requirements.b) It reduces defect multiplication.c) It facilitates timely set up of the test environment.d) It allows testers to become involved early in the project. | | | 22. Which of the following is a form of functional testing? | | | a) Usability testingb) Boundary value analysisc) Performance testingd) Security testing | | | 23. Which of the following should NOT normally be an objective for a test? | | | a) To find faults in the software.b) To assess whether the software is ready for release.c) To prove that the software is correct.d) To demonstrate that the software doesn't work. | | | 24. Enough testing has been performed when: | | | a) No more faults are found.b) The required level of confidence has been achieved.c) Time runs out.d) The users won't find any serious faults. | | | 25. Which of the following statements are true? | | | a) Faults in program specifications are the most expensive to fix.b) Faults in code are the most expensive to fix.c) Faults in designs are the most expensive to fix.d) Faults in requirements are the most expensive to fix | | | 26. When should you stop testing? | | | a) When time for testing has run out.b) When the test completion criteria have been met | | Date ____ Index Number _____Signature _____ c) When all planned tests have been run d) When no faults have been found by the tests run | Index Number | Signature | Date | |---|---|--------------------------------| | 27. In which order should testsa) The most important tests fb) The order they are thoughtc) The easiest tests first(to gird) The most difficult tests first | irst
t of | fixing) | | b) The acceptance test does nc) Verification activities show | be as similar to production envelor necessarily include a regressald not involve testers (reviews | ssion test | | 29. When should testing be stop a) When all the planned tests b) When all faults have been c) When time has run out d) It depends on the risks for 30. To achieve quality (i.e., defend) a) Close cooperation between | have been run fixed correctly the system being tested ect free products and services). | , we require | | b) Commitmentc) An environment in whichd) All of the above 31. The effort required for locat | | perational program is known as | | a) Testabilityb) Maintainabilityc) Usabilityd) Efficiency | | | | 32. An error that is caused duea) Faulty definition of requirb) Client-developer communc) Deliberate deviations fromd) Logical design errors | ements
nication failures | n be classified as | | Index Number | Signature | Date | |---|------------------------------------|--------------------------------------| | 33. Erroneous algorithms in sota) Faulty definition of requib) Coding errors | rements | | | c) Non-compliance with dood) Logical design errors | cumentation and coding instru | actions | | 34. Erroneous definition of bou | ndary conditions in software | products are usually classified as | | a) Faulty definition of requib) Coding errors | rements | | | c) Non-compliance with dood) Logical design errors | cumentation and coding instru | actions | | 35. Omissions of a required sof | tware system state in software | e products are usually classified as | | a) Faulty definition of requib) Coding errors | rements | | | | cumentation and coding instru | actions | | 36. Omission of definitions con usually classified as | cerning reactions to illegal op | peration of the software system is | | a) Faulty definition of requireb) Coding errors | rements | | | | cumentation and coding instru | actions | | 37. According to IEEE, a softw | vare system product comprises | s | | a) 2 | | | | b) 3
c) 4 | | | | d) 5 | | | | 38. According to IEEE, which | of the following is not a softw | vare system component? | | a) Programs that activate theb) The quality of the procedec) Operating systemd) Documentation data | e computer to perform the requares | uired applications | | | | | | | | 1 | |---|--|---| | | | * | × | Index Number | Signature | Date | |---|---|---| | 39. Which of the followinga) Inter-process inspectb) Maintenancec) Testingd) Quality Planning | is NOT an appraisal in SQA? | | | a) Black box testingb) Grey box testingc) White box testingd) Both a) and b) | is considered as component testin | g? | | | | False' questions (41-50) deducts two ce, carefully selects the option that best | | | rance incorporates all software dev
to coding until release. | relopment processes starting from | | 42. Software Quality Assursatisfaction.a) Trueb) False | rance is a kind of client satisfaction | n, end user satisfaction or customer | | | s ensuring the correctness of the re
hout any bug and according to exp | | | 44. Software Quality Assura) Trueb) False | ance consists of the auditing and r | eporting functions of management. | | 45. In Software Quality Asa) Trueb) False | surance, quality is not a long-term | strategy. | | | * | | | | |--|---|--|--|--| Index Number | Signature | Date | | |--|--|---|----| | | nentation that allows efficient coop
nbers mainly comprises the require | peration and coordination among ements report, design reports, progra | ım | | a) True | | | | | b) False | | | | | | interested in software errors and fa
n, however, software users are wor | aults, their elimination, and the ways ried about software failures. | to | | a) Trueb) False | | | | | 48. In many other cases, err | oneous code lines will not affect th | he functionality of the software as a | | | a) Trueb) False | | | | | 49. Software Quality Assur | ance is used to reduce cost and imp | prove the product time to the market | | | a) Trueb) False | | | | | | vare quality assurance is due to soft product development and product | tware product complexity, invisibilition process | ty | | a) Trueb) False | | | | | | | | |